A REVISED CLASSIFICATION OF THE GENUS ATROPHANEURA REAKIRT (LEPIDOPTERA: PAPILIONIDAE)

D. L. HANCOCK

5 Northampton Crescent, Hillcrest, Bulawayo, Zimbabwe

Abstract

The classification of Atrophaneura Reakirt is revised. Pachliopta Reakirt (= Losaria Moore, syn. nov.; = Balignina Moore, syn. nov.) is recognized as a subgenus, comprising the coon and polydorus groups. A. hector (Linnaeus) is removed from the polydorus group and included with A. antenor (Drury) in subgenus Pharmacophagus Haase (= Tros Kirby, syn. nov.). The phylogeny and biogeography of the genus are discussed.

Introduction

The 45 species considered here were placed in two separate genera, Pachliopta Reakirt and Parides Hübner (subgenus Atrophaneura Reakirt), by Munroe (1961). This arrangement was disputed by Hancock (1980, 1983), who recognized Atrophaneura as a distinct genus and placed Pachliopta as a synonym of it. Munroe (1961) assigned the species to five speciesgroups, which were accepted unchanged by Hancock (1980, 1983). Both authors, however, noted that the position of A. antenor (Drury) from Madagascar, may need to be revised. More information on this species is now available, both from dissected material and data provided by Paulian and Viette (1968). This information enables the systematic position of A. antenor to be resolved.

Another anomalous species is the Indian A. hector (Linnaeus). Generally included in the polydorus group, this species lacks the hypertrophied socii and tegumen of the male genitalia seen in other species in the group (and used as a generic character by Munroe 1961), and A. hector has relatively broader wings than the other members of the polydorus group. Examination of the female genitalia (Fig. 1) shows this species to be closely related to A. antenor, despite the very different shape of the male valvae. The shape of the wings and tail support this arrangement. The female genitalia of these two species share with both the coon and polydorus groups (Figs 2, 3) the presence of an elongate, apically sclerotized ductus bursa. They differ from both these groups in the much more elongate corpus bursa and signum.

With the removal of A. hector, the polydorus group becomes a very homogeneous assemblage. This group is closely related to the coon group, as noted by Hancock (1980, 1983), based on morphological characters of the adults, and by Igarashi (1984), based on larval characteristics. Indeed, Igarashi (1984) included both groups in the genus Pachliopta. even though male genitalia characters do not agree with Munroe's (1961) diagnosis of the genus. Based on the female ductus bursa, A. antenor and A. hector would
also be referable to Pachliopta and some authors may choose to recognize this as a genus. Here however, Pachliopta and Pharmacophagus are both regarded as subgenera of Atrophaneura, in line with earlier findings (Hancock 1980, 1983). Whatever course is followed, the concept of Pachliopta as a genus remains untenable unless both the antenor and coon groups are included.

Classification

Genus Atrophaneura Reakirt

For a generic diagnosis see Hancock (1980, 1983). Although often considered to be a subgenus of Parides, the medial extension to the basal suture on the pseuduncus seen in all species where the suture is entire demonstrates the affinity of this genus with Troides Hübner and its allies. The early stages also support the recognition of Atrophaneura as a separate genus. Grey colour-forms of the larva occur in Atrophaneura, Troides, Ornithoptera Boisduval and Trogonoptera Rippon, but apparently not in Parides or other troidine genera.

Six species-groups are recognized here, placed in three subgenera. Only available names have been listed in the respective synonymies, for unavailable names see Hancock (1980, 1983).

Subgenus Atrophaneura Reakirt

Atrophancura Reakirt, 1865, Proc. ent. Soc. Philad. 3: 446. Type species A. erythrosoma Reakirt (= semperi C. \& R. Felder).

Byasa Moore, 1882, Proc. zool. Soc. Lond. 1882: 258. Type-species Papilio philoxemus Gray ($=$ polyeuctes Doubleday).

Pangerana Moore, 1886, J. Linn. Soc. 21: 51. Type-species Papilio varuna White.

Panosmia Wood-Mason and de Nicéville, 1887, J. Proc. Asiat. Soc. Bengal 55: 374. Type-species Papilio dasarada Moore,

Karanga Moore, 1902, Lep. Indica 5: 157. Type-species Papilio nox Swainson.

Male hind wing with inner marginal androconia (scent-organ) well developed and woolly. Male genitalia with pseuduncus well developed, the basal suture entire and extending for a distance down mid-line; socii and tegumen not hypertrophied; valvae well developed, entire or weakly emarginate dorsally and distally; harpe broad, serrate or toothed; aedeagus short and stout, curved. Female corpus bursa rounded, the signum well developed, elongate and relatively broad; ductus bursa short, stout and not
sclerotized (Figs. 4-5). The larva has a supraspiracular tubercle on the first abdominal segment (Igarashi 1984).

There are two species-groups.
(i) latreillei species-group

Male hind wing with inner marginal fold narrow; tail well developed and spatulate. Male valvae entire; harpe serrate or spinose; pseuduncus with medial extension of suture short (figured by Hancock 1980). This group contains 15 species from southeastern Asia and Japan (Igarashi 1984, Collins and Morris 1985).

Species: daemonius (Alpheraky), plutonius (Oberthür), alcinous (Klug), latreillei (Donovan), polla (de Nicéville), crassipes (Oberthür), adamsoni (Grose-Smith), nevilli (Wood-Mason), laos (Riley \& Godfrey), mencius (C. \& R. Felder), impediens (Rothschild), febanus (Fruhstorfer), hedistus (Jordan), dasarada (Moore), polyeuctes (Doubleday).
(ii) nox species group.

Male hind wing with inner marginal fold very broad and rolled-up; tail vestigial or absent. Male valvae weakly emarginate dorsally and distally; harpe toothed (figured by Hancock 1980). This group contains 12 southeastern Asian species, placed here in two subgroups. A. tungensis Zin and Leow (1982), described from Sumatra, appears to be a hybrid nox x hageni.
priapus subgroup: Male with valvae dorsally rounded and pseuduncus with medial extension of suture short. Hind wing with a distinct yellow, blue or green postdiscal band enclosing black spots. Southern Burma to Sumatra and Java. Four species: priapus (Boisduval), sycorax (Grose-Smith), hageni (Rogenhofer), luchti (Roepke).
nox subgroup: Male with valvae dorsally pointed and pseuduncus with medial extension of suture elongate. Hind wing not as above. Northern India and Taiwan to Sulawesi and Bali. Eight species: semperi (C. \& R. Felder), kuehni (Honrath), horishanus (Matsumura), aidoneus (Doubleday), varuna (White), zaleucus (Hewitson), nox (Swainson), dixoni (Grose-Smith).

Subgenus Pharmacophagus Haase

Pharmacophagus Haase, 1891, Bibl. zool. 8: 15. Type-species Papilio antenor Drury.
Tros Kirby, 1896, Handbk to Order Lepidoptera, Part 1, Butts 2: 305. Type-species Papilio hector Linnaeus. syn. nov.

Wings relatively broad; tail very narrow, non-spatulate; male hind wing with inner marginal androconia (scent organ) absent, the inner marginal fold narrow. Male genitalia with pseuduncus reduced, the basal suture absent or weakly present at sides, never present medially; socii and tegumen not hypertrophied; valvae entire or vestigial; harpe relatively narrow or much reduced; aedeagus long and slender, straight. Female corpus bursa elongate, the signum elongate and narrow; ductus bursa long, slender and sclerotized in apical portion (Fig. 1). The larva retains the supraspiracular tubercle on the first abdominal segment (Woodhouse and Henry 1942, Okano 1983). There are two species-groups.
(i) antenor species-group.

Fore wing with numerous white spots; hind wing with a postdiscal series of three white spots towards the costa and scattered blue-green scales; antenna red, the club straight. Male genitalia (Fig. 6) with valvae well developed, entire; harpe relatively narrow and with a large tooth posteriorly; pseuduncus short, broad, with two small dorsal tubercles but without a basal suture (not absent beyond suture as previously noted).

This group contains only A. antenor from Madagascar. The female genitalia were figured by Paulian and Viette (1968), the larva by Okano (1983).
(ii) hector species-group.

Fore wing with subapical and discal white bands; hind wing generally with a postdiscal series of red spots (the three towards the costa being best developed) but no metallic scales; antenna black, the club curved. Male genitalia with the valvae vestigial; harpe thorn-like; pseuduncus short, broad, with a trace of suture at sides (figured by Hancock 1980).

This group contains only A. hector from India, Sri Lanka and the Andaman Is. Woodhouse and Henry (1942) recorded a specimen with the red hind wing spots suppressed and greenish-blue reflections present, and described the larva in detail; the supraspiracular tubercle on the first abdominal segment is small.

Subgenus Pachliopta Reakirt

Pachliopta Reakirt, 1865, Proc. ent. Soc. Philad: 3: 503. Type-species Papilio diphilis Esper (= polydorus Linnaeus).
Losaria Moore, 1902, Lep. Indica 5: 184. Type-species Papilio coon Fabricius. syn. nov.

Balignina Moore, 1902, Lep. Indica 5: 187. Type-species Papilio neptunus Guérin-Méneville. syn. nov.

Figs 1-7. Male and female genitalia. 1-5: Corpus bursa and ductus bursa of Atrophaneura. 1: A. hector; 2: A. neptunus; 3: A. aristolochiae; 4: A. polyeuctes; 5: A. varuna. 6-7: Male genitalia of Atrophaneura. 6: A. antenor; 7: A. neptunus. ($\mathrm{p}=$ dorsal view of $\mathrm{pseuduncus)}$.

Wings narrowed; male hind wing with inner marginal androconia (scentorgan) reduced or absent, not woolly, the inner marginal fold narrow. Male genitalia with pseuduncus often reduced, the basal suture absent or weakly present at sides, never present medially; socii and tegumen often hypertrophied; valvae dorsally emarginate or greatly reduced; harpe narrow and longitudinal, or a transverse ridge; aedeagus long and slender, straight. Female corpus bursa rounded, the signum short and broad; ductus bursa long, slender and sclerotized in apical portion (Figs 2-3). The larva lacks the supraspiracular tubercle on the first abdominal segment (Igarashi 1984). There are two species-groups.

(i) coon species-group

Male hind wing with scent-organ present; tail petiolate. Male genitalia with valvae dorsally emarginate but well developed; harpe narrow and longitudinal or a transverse ridge; pseuduncus with or without traces of suture at sides; socii and tegumen not hypertrophied. Female corpus bursa rounded; signum rounded, composed of spicules; ductus bursa sclerotized for a relatively long distance (Fig. 2). This group contains four southeastern Asian species, placed here in two subgroups.
neptunus subgroup: Male with valvae mitten-shaped and with a weak dorsal emargination (Fig. 7; Hancock 1984); harpe a transverse ridge; pseuduncus short and without suture; socii bent downwards. Hind wing with postdiscal patches only. Malaya and Palawan to Sulawesi. Two species: neptumus (Guérin-Méneville), palu (Martin). When viewed in incident light, the black wing areas of A. palu have a violet sheen.
coon subgroup: Male with valvae strongly dorsoapically emarginate; harpe elongate and longitudinal; pseuduncus elongate and with traces of suture at sides; socii not bent downwards (figured by Hancock 1980). Hind wing with discal and submarginal patches or spots. Assam and Hainan to Andaman Is. and Sumatra. Two species: coon (Fabricius), rhodifer (Butler).
(ii) polydorus species-group

Male hind wing with scent-organ vestigial or absent; tail present or absent but not petiolate. Male genitalia with valvae greatly reduced; harpe thornlike; pseuduncus with or without a vestigial suture at sides; socii and tegumen hypertrophied (figured by Hancock 1980). Female corpus bursa rounded; signum relatively short and narrow, striate; ductus bursa sclerotized for a relatively short distance (Fig. 3). This group contains 12 Indo-Australian species, although A. aristolochiae kotzebuea (Eschscholtz) is regarded as a distinct species by some authors (e.g. Collins and Morris 1985).

Species: jophon (Gray), pandiyana (Moore), oreon (Doherty), liris (Godart), polyphontes (Boisduval), schadenbergi (Semper), mariae (Semper), phegeus
(Hopffer), phlegon (C. \& R. Felder), atropos (Staudinger), aristolochiae (Fabricius), polydorus (Linnaeus).

Phylogeny and Biogeography

A reappraisal of the relationships of the subgenera and species-groups of Atrophaneura can now be made. Based on outgroup comparison with Troides, Ornithoptera and Trogonoptera, subgenus Atrophaneura appears to be the most primitive, since these groups have several features in common, such as the unsclerotized ductus bursa, well developed valvae, stout and curved aedeagus, medial extension to the pseuduncus suture (except in Trogonoptera, where the pseuduncus is reduced) and well developed scentorgan on the male hind wing.

The various differentiating characters of Pharmacophagus and Pachliopta all appear to be derived, as is the loss of the lateral supraspiracular tubercle on the first abdominal segment of the larva in Pachliopta. This tubercle is present in Atrophaneura, Pharmacophagus and the Troides group (Igarashi 1984), and also in Parides and Battus (Scopoli) (Moss 1919). Although more detailed information is required, it appears that the larvae of both Pharmacophagus species have a pair of black-tipped tubercles on the prothorax, whilst the pupae have the lateral expansions of the thorax reduced. In Atrophaneura and Pachliopta these prothoracic tubercles are wholly red, whilst the lateral expansions of the pupae are more pronounced.

The elongate corpus bursa and shape of the signum, plus the postdiscal spots and narrow tail of the hind wing, suggest that antenor and hector represent sister-groups. The reduced valvae of the polydorus group, different from the vestigial condition seen in A. hector, represent an extreme development of the dorso-apical reduction seen in the coon group, and these also appear to be sister-groups. Larval characters support this arrangement. The suggested phylogenetic relationships of the six speciesgroups are shown in Fig. 8.

Having established the relationship of the various subgenera and groups, some interesting biogeographical hypotheses can be proposed, which amend the discussion by Hancock $(1980,1983)$. It is very likely that the Troides lineage radiated from Sundaland, suggested by the presence there of both Trogonoptera and Troides subgenus Ripponia Haugum \& Low and the existence of Ornithoptera in the New Guinea region. Based on pattern characters, particularly the extent of the yellow areas on the hind wing and the iridescent scaling on the underside, Ripponia is considered to be more primitive than subgenus Troides, forming a link with Ornithoptera (Hancock 1983).

Atrophaneura appears to have radiated from further north, with the unspecialized latreillei group centred in southern China and neighbouring
areas, but not in India. A spread to Sundaland appears to have resulted in the differentiation of Pachliopta. In the present author's opinion, a taxon is more likely to undergo change whilst colonizing a new environment than in one where it has stabilized, hence the numerous specializations seen in Pachliopta support the suggestion that it is the colonizer. The coon group, with its less reduced valvae and non-hypertrophied tegumen and socii appears to be less specialized than the polydorus group, suggesting a

Fig.8. Phylogenetic relationship of the species-groups of Atrophaneura. Character sets: 1:Male scent-organ well developed and woolly; suture at base of pseuduncus entire; harpe broad; aedeagus short, stout and curved; ductus bursa short, stout and unsclerotized. 2: Male scent-organ reduced or absent; suture at base of pseuduncus absent medially; harpe narrow; aedeagus long, slender and straight; ductus bursa long, narrow and apically sclerotized. 3: Tail narrow; corpus bursa elongate; signum elongate and narrow; larva with a supraspiracular tubercle on first abdominal segment. 4: Tail petiolate, spatulate or absent: corpus bursa rounded; signum short and broad; larva without a supraspiracular tubercle on first abdominal segment. See text for characters delimiting species-groups.

Sundaland origin for the subgenus. At a later stage this colonization was repeated by the nox group of subgenus Atrophaneura, again accompanied by some character specialization, such as loss of the tail, expansion of the scent-organ and reduction of the valvae. The priapus subgroup, with its less reduced valvae and short medial extension of the pseuduncus suture (as seen in the latreillei group), appears to be less specialized than the nox subgroup. This suggests that the nox group radiated from Sundaland rather than from further north.

An early offshoot from Pachliopta apparently reached India as Pharmacophagus and from there it spread to Madagascar. The Sundaland ancestor then split into two, to give the coon and polydorus groups. The original Pachliopta ancestor in Sundaland apparently adapted to drier forest types than Atrophaneura, perhaps as a result of competition with the already established Trogonoptera and Troides. This presumably assisted in its dispersal into India and Madagascar. A. hector is known to be migratory (Woodhouse and Henry 1942).

The Old World troidines appear to have been closely associated with southeastern Asia for a considerable period of time. They probably arrived there at the same time Cressida Swainson reached Australia, both evolving from South American ancestors during the tectonic break-up of continental Gonwanaland. As such they provide strong biological evidence for the suggestion (apparently no yet fully embraced in biogeographical studies) that southeastern Asia, including southern China, was a part of Gondwanaland, closely associated with India and Australia. Geological and palaeontological evidence for this were provided by Ridd (1971) and Cooper (1980) respectively.

Acknowledgement

I am grateful to Lt. Col. J. N. Eliot (UK) for supplying material of A. neptunus for dissection.

References

COLLINS, N. M. and MORRIS, M. G., 1985. 'Threatened swallowtail butterflies of the World, the IUCN Red Data Book.' IUCN, Gland \& Cambridge.
COOPER, M.R., 1980. Palaeobiogeography and the reassembly of Gondwanaland. South African Journal of Science 76: 35-37.
HANCOCK, D. L., 1980. The status of the genera Arrophaneura Reakirt and Pachliopta Reakirt (Lepidoptera: Papilionidae). Australian Entomological Magazine 7: 27-32.
HANCOCK, D. L., 1983. Classification of the Papilionidae (Lepidoptera): a phylogenetic approach. Smithersia 2: 1-48.
HANCOCK, D. L., 1984. A note on Atrophaneura palu (Martin) 1912. Papilio International 1: 71-72.

IGARASHI, S., 1984. The classification of the Papilionidae mainly based on the morphology of their immature stages. Tyô to Ga 34: 41-96.
MOSS, A. M., 1919. The Papilios of Para. Novitates Zoologicae 26: 295-319, 3 pls.
MUNROE, E., 1961. The classification of the Papilionidae (Lepidoptera). Canadian Entomologist, Suppl. 17: 1-51.
OKANO, K., 1983. The revision of classification on the genera of Papilionidae in the World (preliminary report). Part 1: with description of a new genus. Tokurana 5: 1-75.
PAULIAN, R. and VIETTE, P., 1968. Insectes Lépidoptéres Papilionidae. Faune de Madagascar 27: 1-97, 19 pls.
RIDD, M. F., 1971. South east Asia as a part of Gondwanaland. Nature, London 234: 531533.

WOODHOUSE, L. G. O. and HENRY, G. M. R., 1942. 'The Butterfly fauna of Ceylon.' Ceylon Joumal of Science. Colombo, 172pp.
ZIN, S. Z. and LEOW, K. F., 1982. A new species of Atrophaneura butterfly from Sumatra, Malayan Nature Journal 35: 285-290.

